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A Generic 4thOrder 2D Unstructured Euler Solver for

the CESE Method

David L. Bilyeu,∗ Yung-Yu Chen, † and S.-T. John Yu ‡

The Ohio State University, Columbus, OH 43210, USA

Previously, Chang1 reported a new class of high-order Conservation Element Solution
Element, CESE, methods for solving nonlinear hyperbolic partial differential equations.
The scheme was then extended by Bilyeu, et al.2 to solve a 1D vector equation with an
arbitrary order of convergence. This new high-order CESE method shares many favorable
attributes of the original second-order CESE method, including: (i) compact mesh stencil
involving only the immediate mesh nodes surrounding the node where the solution is
sought, (ii) the CFL stability constraint remains the same, i.e., ≤ 1, as , and (iii) superb
shock capturing capability without using an approximate Riemann solver. In the present
extended abstract, we extend the 1D formulation to 2D. A general formulation is presented
for solving the coupled equations with 4thorder accuracy. To demonstrate the formulation,
two linear cases are reported. The linear test cases shown are the convection equation and
the linear acoustic equation.

In the final paper we plan to present non-linear test cases and solve the equations on a
quad mesh.

I. Introduction

In this work, we extend the 1D solver for one nonlinear hyperbolic equation to two dimensions. The
new formulation is currently restricted to 4thorder but can be extended to higher orders by extending the
Taylor series. To demonstrate the capabilities of the new scheme, we apply the method to solve two sets of
equations: (i) the linearized acoustic equations, and (ii) a convection equation.

The original second-order CESE method3, 4 solves the hyperbolic PDEs by discretizing the space-time
domain by using the conservation elements (CEs) and solution elements (SEs). The profiles of unknowns are
prescribed by assumed discretization inside SEs. Aided by the approximation for the unknowns in the SEs,
space-time flux conservation can be enforced over each CE. The calculation of space-time flux conservation
results in the formulation for updating the unknowns in the time marching process. The special features
of the CESE method include: (i) The conserved variables are represented by a Taylor series expansion in
both space and time. The order of the Taylor series is also the order of the solver. (ii) The a scheme, the
core scheme of the CESE method, is non-dissipative. (iii) The CESE method has the most compact mesh
stencil possible involving only the immediate neighboring mesh points that surround the mesh node where
the solution is sought. (iv) The method uses explicit integration in time marching. The stability criterion is
CFL ≤ 1. (v) No approximate Riemann solver is used and the scheme is simple and efficient.

The space-time stencil used in this derivation is the same as that reported by Wang and Chang4 and is
repeated here for completeness. Figure 1 is a top down view of the computational domain. In this figure the
solid lines represent the mesh and the dashed lines are the boundaries of the conservation element centered
at G(j). The squares are vertices’s of the mesh, the circles are the solution points and the x are the centroid
of each triangle. Figures 2a and 2b are the conservation element, CE, and solution element, SE, associated
with the solution point G(j). These CE is the 3D space-time element that is used to conserve flux and the
SE is the domain that that the Taylor series is assumed to be valid in.

In the following derivation we make the following assumptions:

∗Ph.D. Student, Dept. of Mechanical Engineering, bilyeu.4@osu.edu, and AIAA Student Member.
†Ph.D. Candidate, Dept. of Mechanical Engineering, chen.1352@osu.edu.
‡Associate Professor, Dept. of Mechanical Engineering, yu.274@osu.edu and AIAA Member.
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1. The flux is a known function of the flow variables

2. Inside of a solution element the flow variables and fluxes can be expressed as a Taylor series

3. The desired order of convergences is even

4. Each even derivative has an odd derivative in each spatial direction.

5.

∂2u

∂x∂y
=

∂2u

∂y∂x

6. The source term is handled via operator splitter

7. For non steady state problems the order of convergence of the initial conditions must match or exceed
the desired order of accuracy of the solver.

Shown below is a 4thorder Taylor expansion in two spatial derivatives

u∗ = u+ ux∆x+ uy∆y +
(

uxx∆x2 + uxy∆x∆y + uyx∆y∆x+ uyy∆y2
)

/2.0+
(

uxxx∆x3 + uyyy∆y3 + (uxxy + uxyx + uyxx)∆x2∆y + (uxyy + uyxy + uyyx)∆y2∆x
)

/6.0.
(1)

If we assume that the Taylor series expansion of uxy and uyx are equal then

∂uxy

∂x
=

∂uyx

∂x
and

∂uxy

∂y
=

∂uyx

∂y

or

uxyx = uyxx and uxyy = uyxy.

(2)

Under theses assumption the Taylor series becomes

u∗ = u+ ux∆x+ uy∆y +
(

uxx∆x2 + 2uxy∆x∆y + uyy∆y2
)

/2.0+
(

uxxx∆x3 + uyyy∆y3 + (uxxy + 2uxyx)∆x2∆y + (2uxyy + uyyx)∆y2∆x
)

/6.0.
(3)

This extended abstract is organized as follows. Section II derives the equations necessary to progress the
conserved variables to the next time step. This section is broken up into 4 sub sections one for calculating
the fluxes, temporal derivatives, even and odd derivatives of the conserved variables. Section III contains
the preliminary results from the convection equation and linear acoustic equation.

II. Derivation

The governing equation that we wish to solve is

∂U

∂t
+∇ ·Fxj = S, (4)

where

U = (u1, u2, . . . , um)T ,Fx = (fx
1 , f

x
2 , . . . , f

x
m)T ,Fy = (fy

1 , f
y
2 , . . . , f

y
m)T ,S = (s1, s2, . . . , sm)T , (5)

m is the number of equations. Each um is expressed as a Taylor series,

u∗

m =

N
∑

a=0

N−a
∑

b=0

N−a−b
∑

c=0

∂a+b+cum

∂xa∂yb∂tc
1

a!b!c!
(x− xj)

a(y − yj)
b(t− tn)c, (6)

where N is equal to the desired order of convergence minus 1. For 4thorder N is equal to 3. For future
reference the power in the numerator of the ∂ will be dropped, e.g.

∂a+b+cum

∂xa∂yb∂tc
≡

∂um

∂xa∂yb∂tc
. (7)
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The derivative of any Taylor series can be written as

∂u∗

m

∂xI∂yJ∂tK
=

A
∑

a=0

B−a
∑

b=0

C−a−b
∑

c=0

∂um

∂xI+a∂yJ+b∂tK+c

1

a!b!c!
(x− xj)

a(y − yj)
b(t− tn)c, (8)

where A = N − I − J −K, B = N − I − J −K and C = N − I − J −K. A similar expansion for the fluxes
is also true

∂f∗

m

∂xI∂yJ∂tK
=

A
∑

a=0

B−a
∑

b=0

C−a−b
∑

c=0

∂fm
∂xI+a∂yJ+b∂tK+c

1

a!b!c!
(x− xj)

a(y − yj)
b(t− tn)c. (9)

For 2D there are a total of 3
∑N

n=0 (N − n)(n+ 1) unknowns per governing equation. For a 4thorder 2D Euler
equation there would be a total of 180 unknowns. In what follows we will show that the only independent
variables are the spatial derivatives of the conserved variables

∂um

∂xI∂yJ
I = 0, 1, . . . , N

J = 0, 1, . . . , N − I
m = 1, . . . , Neq. (10)

For a 4thsolver the independent variables are

Table 1: Table of the independent conserved variables

Even Odd

u ux uy

uxx uxxx uxxy

uxy uxyx uxyy

uyy uyyx uyyy

II.A. Fluxes

Since the fluxes are known functions of the conserved variables the derivatives of the fluxes can be found
from the chain rule.

∂fxi

m

∂Y1
=

Neq
∑

l

∂fxi

m

∂ul

∂ul

∂Y1
, Y1 = x, y, t (11)

∂2fxi

m

∂Y1∂Y2
=

Neq
∑

l

∂fxi

m

∂ul

∂2ul

∂Y1∂Y 2
+

Neq
∑

l,k

∂2fxi

m

∂ul∂uk

∂ul

∂Y1

∂uk

∂Y2
(Y1, Y2) =

(x, x) (y, y)

(t, t) (x, y)

(x, t) (y, t)

(12)

∂3fxi

m

∂Y1∂Y2∂Y3
=

Neq
∑

l

∂fxi

m

∂ul

∂3ul

∂Y1∂Y2∂Y3
+

Neq
∑

l,k

∂2fxi

m

∂ul∂uk

(

∂2ul

∂Y1∂Y2

∂uk

∂Y3
+

∂2ul

∂Y1∂Y3

∂uk

∂Y2
+

∂2ul

∂Y2∂Y3

∂uk

∂Y1

)

+

Neq
∑

l,k,p

∂3fxi

m

∂ul∂uk∂up

∂ul

∂Y1

∂uk

∂Y2

∂up

∂Y3

(Y1, Y2, Y3) =

(x, x, x) (y, y, y) (t, t, t) (x, y, t)

(x, x, y) (y, y, t) (x, x, t)

(x, y, y) (y, t, t) (x, t, t)

(13)

for xi = x, y. These equations will continue until all of the fluxes are found. After these equations are
applied there will be

∑N
n=0 (N − n)(n+ 1) unknowns left per governing equation. This method will work

for all higher derivatives but becomes more and more complicated as the number of derivatives increases.
Another approach is to directly calculate each derivative with out using a Jacobian.
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II.B. Temporal derivatives

In this section we will use the governing equation and its derivatives to find the temporal derivatives of the
conserved variables.

∂um

∂t
= sm −

∂fx
m

∂x
−

∂fy
m

∂y
,

∂

∂x

(

∂um

∂t

)

=
∂sm
∂x

−
∂2fx

m

∂x∂x
−

∂2fy
m

∂y∂x
,

∂

∂y

(

∂um

∂t

)

=
∂sm
∂y

−
∂2fx

m

∂x∂y
−

∂2fy
m

∂y∂y
, . . . .

(14)

In general any temporal derivative of a conserved variable can be found using

∂um

∂xI∂yJ∂tK
=

∂sm
∂xI∂yJ∂tK−1

−
∂fx

m

∂xI+1∂yJ∂tK−1
−

∂fy
m

∂xI∂yJ+1∂tK−1
,

for K = 1, 2, . . . , N ; J = 0, 1, . . . , N −K; I = 0, 1, . . . , N −K − J.

(15)

This leaves us with
∑N

n=0(n + 1) unknowns per governing equation. For a 4thorder Euler solver this would
be 40 unknowns, 10 per equation.

II.C. Space-Time Flux Conservation

To find the next set of conserved variables we conserve flux across both space and time. It should be noted
that the geometry of the Conservation Element and Solution Elements are the same as the ones presented
by Wang and Chang.4 By using the Gauss-divergence theorem we can convert the governing equation into
integral form

∮

hm(x, y, t) · ds =

∫∫∫

smdV. (16)

This equation will be used to find all even derivatives, e.g. u, uxx, uxy, uyy, uxxxx, . . . . The rest of the
unknowns will be found using a central difference like procedure. Eq. (16) can be used to find um and its
derivative will be used to find the other even derivatives

∮

∂hm

∂xIyJ
(x, y, t) · ds =

∫∫∫

∂sm
∂xIyJ

dV. (17)

II.D. Even

The even derivatives are found by conserving the flux through the CE. To make this calculation more
manageable we will separate this calculation into three steps, (1) the flux through a side face, (2) the flux
through the bottom face and (3) the flux through the top face. The flux through the side and bottom faces
are calculated using the neighboring solution points while the flux through the top face is calculated from
the current solution point.

To begin we will calculate the flux through the side faces. Figure 3 shows the faces associated with the
solution point jr. The coordinate axis is located at cell center and the vertex (x0, y0) is the solution point.

First we will shift the coordinate axis to the neighboring solution point. For future reference we will
denote the actual location with capital letters, (X,Y ), and relative coordinates with lower case letters,
(x, y). The flux can now be expressed as

fxi∗

m =
A
∑

a

B
∑

b

C
∑

c

∂fm
∂xa∂yb∂tc

xayb(t− tn−1/2)c

a!b!c!
, (18)
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where x = X −Xjr and y = Y − Yjr . Next we apply the following coordinate transformation

x = u(x1 − x0) + x0

y = u(y1 − y0) + y0

t =
∆t

2
v + tn−1/2

0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

(19)

The normal vector is equal to N = [∆t
2 (y1 − y0),−

∆t
2 (x1 − x0), 0]. Using the coordinate transformation Eq.

(18) can be rewritten as

fxi∗

m =

A
∑

a

B
∑

b

C
∑

c

∂fm
∂xa∂yb∂tc

(u(x1 − x0) + x0)
a (u(y1 − y0) + y0)

b (∆t
2 v
)c

a!b!c!
. (20)

The flux through a side face is equal to
∫∫

(fxi∗

m Ni)r dudv =

2
∑

i=1

A
∑

a

B
∑

b

C
∑

c

∫ 1

0

∫ 1

0

(

∂fxi
m

∂xa∂yb∂tc

)n−1/2

jr

(u(x1 − x0) + x0)
a
(u(y1 − y0) + y0)

b (∆t
2 v
)c

a!b!c!
Nridudv.

(21)

The flux through the faces associated with solution point jr is

(Fm)jr =

2
∑

i=1

A
∑

a

B
∑

b

C
∑

c

(

∂fxi

m

∂xa∂yb∂tc

)

r

(∆t
2 )c+1

(c+ 1)!a!b!
[

(

Nxi
)

01

∫ 1

0

(u(x1 − x0) + x0)
a
(u(y1 − y0) + y0)

b
du+

(

Nxi
)

02

∫ 1

0

(u(x2 − x0) + x0)
a
(u(y2 − y0) + y0)

b
du

]

.

(22)

The total flux through the side faces is
∑3

r=1 (Fm)jr .
Next we will calculate the flux through the top and bottom surface. This requires us to integrate over an

arbitrary quadrilateral. The only assumption that can be made about the quadrilateral is that it is concave.
As with the side face we shift the centroid to the current solution point. An arbitrary bottom face is shown
in Fig. 4. In this figure point 1 is the centroid of the adjacent CE and point 3 is the centroid of the CE and
the current solution point. Points 2 and 4 are the shared vertices’s of the mesh. To integrate the flux through
the bottom surface we split the quadrilateral into two triangles and then provide a coordinate transformation
that will convert the triangles into right triangles. The area of the triangles are

AI =
1

2

∣

∣

∣

∣

∣

x3 − x1 y3 − y1

x4 − x1 y4 − y1

∣

∣

∣

∣

∣

AII =
1

2

∣

∣

∣

∣

∣

x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣

∣

∣

∣

∣

. (23)

The transformation equation used for region I is

uI = ux(x− x1) + uy(y − y1) vI = vx(x− x1) + vy(y − y1). (24)

To express x and y as functions of u and v we set (u3, v3) = (1, 0) (u4, v4) = (1, 1)

xI = u(x3 − x1) + v(x4 − x3) + x1

yI = u(y3 − y1) + v(y4 − y3) + y1,
(25)

where 0 ≤ v ≤ u and 0 ≤ u ≤ 1. The normal is equal to N = [0, 0, 2AI ]. This process is repeated for region
II yielding

xII = u(x2 − x1) + v(x3 − x2) + x1

yII = u(y2 − y1) + v(y3 − y2) + y1,
(26)
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where 0 ≤ v ≤ u and 0 ≤ u ≤ 1. The normal is equal to N = [0, 0, 2AII ]. Since the first two terms in the
normal are zero the flux through the bottom surface is

(Um)
n−1/2
jr

= 2

∫∫

u∗

IAI + u∗

IIAIIdudv =

2

∫ 1

0

∫ u

0

A
∑

a

B
∑

b

1

a!b!

(

∂um

∂xa∂yb

)n−1/2

jr

[

AI (u(x3 − x1) + v(x4 − x3) + x1)
a
(u(y3 − y1) + v(y4 − y3) + y1)

b
+

AII (u(x2 − x1) + v(x3 − x2) + x1)
a (u(y2 − y1) + v(y3 − y2) + y1)

b
]

dudv.

(27)

The total flux through the bottom faces is
∑3

r=1 (Um)
n−1/2
jr

. The flux through the top face is found in a
like manner. Since the bottom and top face have the exact same shape we use the same diagram for both
the top and the bottom. The difference is that the corresponding solution point is located at point 3. Which
means that (x3, y3) = (0, 0). Using this the flux through the top face is

(Um)
n
jr

= 2

∫∫

u∗

IAI + u∗

IIAIIdudv =

2

∫ 1

0

∫ u

0

A
∑

a

B
∑

b

1

a!b!

(

∂um

∂xa∂yb

)n

j

[

AI (u(x3 − x1) + v(x4 − x3) + x1)
a (u(y3 − y1) + v(y4 − y3) + y1)

b +

AII (u(x2 − x1) + v(x3 − x2) + x1)
a (u(y2 − y1) + v(y3 − y2) + y1)

b
]

dudv.

(28)

The total flux through the top face is equal to
∑3

r=1 (Um)
n
jr
. These equations are combined to progress the

even derivatives to the next time step

3
∑

r=1

(Um)njr =

∫∫∫

smdV −

3
∑

r=1

(

(Um)n−1/2
jr

+ (Fm)jr

)

. (29)

Since the geometry of the CE and SE are the same as in the second order version we can use the same
simplifications. This results in the first derivatives ux, uy canceling out. This allows us to solve for um

explicitly

(um)
n
j =

1

Atot

(

∫∫∫

smdV −

3
∑

r=1

(

(

Ũm

)n

jr
+ (Um)

n−1/2
jr

+ (Fm)jr

)

)

. (30)

where Atot is the total area of the CE and

(

Ũm

)n

jr
=

2

∫ 1

0

∫ u

0

A
∑

a

B
∑

b

1

a!b!

(

∂um

∂xa∂yb

)n

j

[

AI (u(x3 − x1) + v(x4 − x3) + x1)
a
(u(y3 − y1) + v(y4 − y3) + y1)

b
+

AII (u(x2 − x1) + v(x3 − x2) + x1)
a
(u(y2 − y1) + v(y3 − y2) + y1)

b
]

dudv(a, b) 6=

(0, 0),

(1, 0),

(0, 1)

.

(31)

None of the integrals in Eqs (22), (27), and (28) have been evaluated. All of these integrations can be
found using multiple methods. The easiest method is to use a program capable of symbolic integration.
But they could also be evaluated by hand using

∫

fdg = fg −
∫

gdf multiple times. It is also possible to
use the binomial theorem to generate a formula that could be used for any combination of a and b. In our
investigation we evaluated the integrals using a symbolic math package.
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II.E. Odd

The odd derivatives are evaluated using a central difference like approach. The stencil used for the odd
derivatives is shown in Fig. 5. In this figure the black dots are the vertices’s and the circles are the solution
points. The crosses represent the shifted locations of the solutions points. A shifted point is used to reduce
the dissipation as the CFL number approaches zero. The location of the crosses is calculated by

(

xj′r , yj′r
)

= [τ(xjr − xj) + xj , τ(yjr − yj) + yj] , (32)

where τ is the absolute value of the local cfl number. We take a Taylor expansion from j to any j′r, r = 1, 2, 3
as

u∗

m(jr, n) =

A
∑

a=0

B
∑

b=0

(

∂um

∂xa∂yb

)n

j

1

a!b!

(

X ′

jr −Xj

)a (
Y ′

jr − Yj

)b
. (33)

We will shift the coordinate axis so that point j is at the origin. The Taylor expansion now becomes.

u∗

m(jr , n) =
A
∑

a=0

B
∑

b=0

(

∂um

∂xa∂yb

)n

j

1

a!b!

(

x′

jr

)a (
y′jr
)b

. (34)

In order to find the two unknowns we will construct two equations.

[

x′

1 y′1
x′

2 y′2

] [

u
(1)
mx

u
(1)
my

]

=







(u∗

mj1
)nj −

∑A
a=0

∑B
b=0

(

∂um

∂xa∂yb

)n

j

1
a!b!x

′a
1y

′b
1

(u∗

mj2
)nj −

∑A
a=0

∑B
b=0

(

∂um

∂xa∂yb

)n

j

1
a!b!x

′a
2y

′b
2







for (a, b) 6= (0, 1), (1, 0).

(35)

Since u∗

mjr
can not be evaluated yet we approximate it with

(

u∗

jr

)n

j
≈

A
∑

a=0

B
∑

b=0

C
∑

c=0

(

∂um

∂xa∂yb∂tc

)n− 1

2

jr

1

a!b!c!

(

x′

jr − xjr

)a (
y′jr − yjr

)b
(

∆t

2

)c

. (36)

Eqs. (35) and (36) are used to find one possible solution to umx and umy using information from two of the
three surrounding solution points. This will be repeated using all possible combinations of adjacent solution
points, e.g. (j1,j2), (j2,j3), (j3,j1). These solutions are then weighted using this formula.

umx = ω(u(1)
mx, u

(2)
mx, u

(3)
mx, α) umy = ω(u(1)

my, u
(2)
my, u

(3)
my, α) (37)

where the weighting function, ω as defined by Wang and Chang4

ω =
(θm2θm3)

αu
(1)
mxi + (θm3θm1)

αu
(2)
mxi + (θm1θm2)

αu
(3)
mxi

(θm1θm2)α + (θm2θm3)α + (θm3θm1)α
, (38)

where xi = x, y and

θmr =

√

(

u
(r)
mx

)2

+
(

u
(r)
my

)2

. (39)

Equations (35) and (36) are used to progress the odd derivatives to the next time step. Since the odd
derivatives are dependent on the next lower derivative it must be calculated before hand.

III. Preliminary Results

To date we have simulated the convection and linear acoustic equations. In both cases a 4thorder Taylor
series was used which should lead to a convergence rate of 4. To determine the convergence rates we used
the l2 defined as
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l2 =

√

∫

ε2dA, (40)

where

ε = unumerical − uanalytical. (41)

Since the Taylor series coefficients are constant Eq. 40 is simplified to

l2 =

√

∑

i

ε2iAi,

where Ai is the area of cell i.
Each convergence test was done on two different types of meshes. The first is a uniform mesh that is

created by splitting a quad mesh into 4 triangles. The triangles are created by splitting the quad through the
diagonals. The second mesh is an unstructured mesh generated using an advancing front algorithm. Both
meshes were created using Cubit. For the uniform mesh the QTri mesh was used. For the nonuniform mesh
the TriAdvance was used. The TriAdvance algorithm first tires the Delaunay algorithm, then the TriAdvance
then finally the QTri method.

III.A. Advection Equation

The governing equation is

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
= 0.

Under periodic boundary conditions and a domain of −π ≤ x ≤ π, −π ≤ y ≤ π u is equal to

u = sin(axx+ ayy + att),

where ax = ay = 1 and at = −
√

a2x + a2y. In this test case we let the simulation run for a time of 15 at an

approximate CFL number of 1.0.
When calculating the convergence rates the characteristic length was the square root of the average area

triangle and the square root of the largest area triangle for the uniform and nonuniform mesh respectively.

cells h l2 O(l2)

400 9.870E-02 2.158E-01 -

1600 2.467E-02 6.726E-03 5.00

3600 1.097E-02 8.762E-04 5.03

6400 6.169E-03 2.065E-04 5.02

10000 3.948E-03 6.735E-05 5.02

(a) Structured grid

cells h l2 O(l2)

232 1.690E-01 2.929E-01 -

926 4.255E-02 9.727E-03 4.94

2068 1.909E-02 1.315E-03 4.99

3694 1.068E-02 3.131E-04 4.94

5774 6.835E-03 1.022E-04 5.01

(b) Unstructured grid

Table 2: Convergecne rates for the advection equation.

As seen in Table 2 the convergence rates are 5thorder instead of 4thorder as expected. We plan on
investigating this in more detail before the final paper is submitted.

III.B. Linear Acoustic

The governing equation is

∂ρ

∂t
+ ρ0

(

∂vx
∂x

+
∂vx
∂x

)

= 0

∂vx
∂t

+
a20
ρ0

∂ρ

∂x
= 0

∂vy
∂t

+
a20
ρ0

∂ρ

∂y
= 0,
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where ρ, vx, vy, a0, and ρ0 are respectively the density, x and y component of the velocity, free stream
speed of sound and free stream density. Under periodic boundary conditions, and a domain −2π ≤ x ≤ 2π,
−2π ≤ y ≤ 2π an analytical solution is

ρ = ρ′ sin(axx+ ayy + att)

Vx = −a20
ρ′

ρ0

ax
at

sin(axx+ ayy + att)

Vy = −a20
ρ′

ρ0

ay
at

sin(axx+ ayy + att),

where ρ′ is the amplitude of the perturbation. In the test case we set ax = ay = 1, ρ′ = 0.01, a0 = rho0 = 1.0.
We let the case run for a time of 18 at an approximate CFL number of 1.0.

The method used to find the characteristic length is that same as the one used for the advection equation.
As seen in Table 3 the convergence rates are also higher than expected. It should also be noted that for

cells h l2 O(l2)

1600 9.870E-02 4.189E-03 -

3600 4.386E-02 6.585E-04 4.56

6400 2.467E-02 1.621E-04 4.87

10000 1.579E-02 5.361E-05 4.96

(a) Structured grid

cells h l2 O(l2)

926 1.705E-01 4.330E-03 -

2068 7.636E-02 7.193E-04 4.47

3694 4.275E-02 1.756E-04 4.86

5774 2.735E-02 5.849E-05 4.92

(b) Unstructured grid

Table 3: Convergecne rates for the acoustic equation.

similar values of h the unstructured mesh tends to have a smaller error than the structured mesh.

IV. Conclusion

In this extended abstract we presented a derivation for a 2D 4thorder solver on an unstructured mesh
using the CESE scheme. We demonstrated higher order convergence using the advection and linear acoustic
equations.

In the final paper we will also include solutions of the Euler Equation, provide a computational efficiency
report and provide an explanation as to why we were able to achieve a convergence rate higher than expected.
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Fig. 1: The CESE domain using a triangular mesh with points of interest marked by squares, circles and
crosses.
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(b) Solution Element

Fig. 2: The CE and SE centered on the centroid mesh point (j,n).

DISTRIBUTION A. 10 of 12

American Institute of Aeronautics and Astronautics



V. Figures
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Fig. 3: The side faces associated with a solution point
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Fig. 5: The stencils used for the odd derivatives
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